Notes
vessels from the late Roman to Islamic periods. However, none of the patterns on these vessels is identical to that on the mold. The originally proposed date is not very convincing because there seems to be no Syrian glass of that time with such a pattern. None of the Hama finds is related in any way to this pattern. Therefore, the mold may have been made in the early Islamic period.

Jens Kröger
Curator
Museum für Islamische Kunst
Staatliche Museen zu Berlin

3. E. Marianne Stern, Roman, Byzantine, and Early Medieval Glass, 10 BCE–700 CE: Ernesto Wolf Collection, Ostfildern-Ruit: Hatje Cantz, 2001, nos. 138 (bottle from Syria, fourth to fifth century), and 156 (bowl, late fourth to early fifth century).

4. Glass from the Ancient World: The Ray Winfield Smith Collection, Corning: The Corning Museum of Glass, 1957, cat. no. 466 (Islamic pitcher, about seventh to ninth century); Stefano Carboni, Glass from Islamic Lands, New York: Thames & Hudson, 2001, cat. nos. 53a and 62; Carboni and Whitehouse [note 1], cat. nos. 15 (Egypt, ninth to 10th century) and 26 (Western Asia, probably Iran, about 12th century).

A Hedwig Beaker Fragment from Brno (Czech Republic)

In 1999, during an excavation in connection with the restoration of the Jiří-Mahen Library in Brno, Czech Republic, a Hedwig beaker fragment was discovered. In the yard behind the library, the remains of several medieval wooden buildings, as well as waste deposits and wells, were excavated. One of these buildings is thought, on the basis of dendrochronological evidence, to have been built after 1235, and it was destroyed by fire about 1275. The beaker fragment, along with a Gothic key and a glazed stove tile fragment, was found in this building. The destruction of the building was dated by ceramic evidence. A brief history of Brno that includes information on possible early owners of Hedwig beakers has been published by Peter Kováčík and others.

The almost colorless glass fragment (inv. no. 98/59-324.5) is housed in the Museum Města Brna. Figure 1 presents two views. The maximum dimension is 4.5 centimeters, and the thickness of the fragment varies from 0.18 to 0.4 centimeters because it was carved on a wheel. The glass contains a few bubbles, and there are traces of weathering on its outer surface.

The decoration consists of a heart-shaped palmette with a flat groove that divides its two branches. This palmette is not much different in form and size from that on the Hedwig beaker at Veste Coburg, Germany (Fig. 2, center). The Coburg palmette expands into two volutes at its edges, while the Brno fragment is without volutes.

Chemical Analysis

Table 1 presents the chemical compositions of the Brno fragment and five other Hedwig beakers, which were analyzed by microprobe. The differences are minimal except for silica and sodium, which are inversely correlated. The glass is low in aluminum and iron, indicating the use of rather pure quartz sand. Two types of soda-lime glasses were made in antiquity. One was produced from natron. It made use of trona (Na₃H(CO₃)₂·2 H₂O), quartz, and lime. It usually contained less than 1% MgO and 1% K₂O. Workshops of the Roman era and the early medieval period in Europe employed this type of glass, importing trona from the evaporites of lakes in northern Egypt (Wadi Natrun). The other type, soda-ash glass, was produced from the ashes of halophytic plants that grow on beaches and in deserts. The soils in these areas impart higher levels of magnesium and potassium to the glass.

Acknowledgment. We thank Prof. Kurt Mengel for conducting the chemical analysis of the beaker fragment from Brno.

Because the production of soda-ash glass was restricted to glass factories in the Islamic world between 900 and 1250, the glass of the Hedwig beakers apparently came from this region. After 1250, Venice began to import halophytic plant ash, and European glass factories were able to make high-quality soda-ash glass. The Hedwig beakers are thought to have been produced in the early 13th century.

On the basis of the data reported in Table 1, we can compare the composition of the Hedwig beakers with that of glasses from different Islamic provinces. Low aluminum and iron concentrations as indicators of high-quality quartz sands are restricted to Hedwig beakers and to glass from the Levant. Most of the Islamic glass producers added MnO in amounts above 0.3% as a decolorizer to their melts, except in the case of the Hedwig beakers. MgO levels are markedly lower in Islamic glasses from the Levant (Caesarea, Tyre, and Banias) than in those made in Egypt, Persia, and Syria. But the quantity of MgO in Hedwig beakers is even lower than that found in the average Levantine glass. This element is apparently diagnostic in recognizing Hedwig beakers as products of Levantine glass manufacture, based on halophytic plant ash that is low in magnesium. The levels of CaO, Na₂O, K₂O, and P₂O₅ are almost identical in the various Islamic glasses shown in Table 1.

Recent excavations at Tyre have unearthed the remains of glasshouses with furnaces that produced large amounts of glass in the 10th and 11th centuries.¹ Documentary evidence has underscored

the high quality of the glass manufactured in the Levant between the 10th and 13th centuries.

Conclusions

Artistic glass vessels such as the Hedwig beakers require a long tradition of high-quality glass-making and glass cutting. Such craftsmanship did not exist in Europe during the early 13th century, but it was evident in the Islamic countries. Because low-magnesium soda-ash glass was made in the Levant, this is the likely area of production for the beakers. Crusaders may have carried these vessels to churches and to members of the nobility in central Europe. In terms of its dimensions, decoration, and chemical composition, the Brno fragment is consistent with the two dozen known Hedwig beakers.

Karl Hans Wedepohl
Center of Geoscience
Göttingen, Germany

David Merta, Marek Pešek,
and Hedvika Sedlákčová
ARCHAIA
Brno, Czech Republic

TABLE 1

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>73.2</td>
<td>69.7</td>
<td>69.3</td>
<td>67.7</td>
<td>69.6</td>
<td>67.8</td>
<td>69.6</td>
<td>68.4</td>
<td>66.5</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.07</td>
<td>0.1</td>
<td>0.10</td>
<td>0.1</td>
<td>0.1</td>
<td>0.09</td>
<td>0.09</td>
<td>0.11</td>
<td>0.16</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>1.12</td>
<td>1.32</td>
<td>1.50</td>
<td>1.24</td>
<td>1.57</td>
<td>1.10</td>
<td>1.31</td>
<td>1.35</td>
<td>2.06</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.43</td>
<td>0.57</td>
<td>0.66</td>
<td>0.65</td>
<td>0.67</td>
<td>0.62</td>
<td>0.60</td>
<td>0.56</td>
<td>1.02</td>
</tr>
<tr>
<td>MnO</td>
<td>0.22</td>
<td>0.35</td>
<td>0.32</td>
<td>0.28</td>
<td>0.30</td>
<td>0.69</td>
<td>0.36</td>
<td>1.00</td>
<td>0.71</td>
</tr>
<tr>
<td>MgO</td>
<td>1.75</td>
<td>1.66</td>
<td>1.69</td>
<td>1.7</td>
<td>1.6</td>
<td>2.21</td>
<td>1.77</td>
<td>2.96</td>
<td>4.21</td>
</tr>
<tr>
<td>CaO</td>
<td>8.56</td>
<td>7.41</td>
<td>7.10</td>
<td>8.4</td>
<td>6.6</td>
<td>9.60</td>
<td>7.94</td>
<td>8.67</td>
<td>7.17</td>
</tr>
<tr>
<td>Na₂O</td>
<td>11.34</td>
<td>16.18</td>
<td>15.60</td>
<td>14.2</td>
<td>16.3</td>
<td>13.69</td>
<td>14.6</td>
<td>13.4</td>
<td>14.6</td>
</tr>
<tr>
<td>K₂O</td>
<td>2.65</td>
<td>2.89</td>
<td>2.68</td>
<td>3.3</td>
<td>3.1</td>
<td>2.85</td>
<td>2.91</td>
<td>2.27</td>
<td>2.74</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.48</td>
<td>0.42</td>
<td>0.35</td>
<td>0.62</td>
<td>0.44</td>
<td>0.20</td>
<td>0.42</td>
<td>0.32</td>
<td>0.41</td>
</tr>
<tr>
<td>Cl</td>
<td>1.04</td>
<td>0.88</td>
<td>1.00</td>
<td></td>
<td>0.64</td>
<td></td>
<td>0.89</td>
<td>0.79</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

4. Wedepohl [note 3].

5. Private communication from Ian C. Freestone.
